FMfl2023 Program	
Name	Sven Leyffer
Affiliation	Argonne National Laboratory
Title	Topological Design Problems and Integer Optimization
Abstract	Topological design problems arise in many important engineering and scientific applications, such additive manufacturing and the design of cloaking devices. We formulate these problems as massive mixed-integer PDE-constrained optimization (MIPDECO) problems. We show that despite their seemingly hopeless complexity, MIPDECOs can be solved efficiently (at a cost comparable to a single continuous PDE-constrained optimization solve). We discuss two classes of such methods for solving MIPDECOs that do not require exhaustive tree-searches: rounding techniques, and trust-region methods. Surprisingly, both methods converge asymptotically under mesh refinement to a globally optimal integer solution under a convexity assumption. We illustrate these solution techniques with examples from topology optimization.