Dynamical Systems in Origami/Kirigami Tessellations

Rinki Imada* and Tomohiro Tachi

Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo

Research Topic: Nonperiodic Folding of Periodic Origami

Kinematics of Rigid Origami

- Kinematics of rigid origami has played a central role in origami science/engineering, where facets/creases of origami are replaced by rigid pabels/rotational hinges.
- The preservation of the shapes of panels and their connectivities impose multiple nonlinear constraints, which are generally hard to solve directly.

Periodic Folding of Periodic Origami

- The periodicity makes solving the kinematics easier and leads to global deformations of the entire structure, which is useful for engineering applications.
- However, it also limits the potential of periodic origami, i.e., origami tessellations.

Nonperiodic Folding of Periodic Origami

- Although it is a source of interesting phenomena that cannot be feasible through periodic folding, it is hard to solve and mathematically understand the kinematics.
- Also, there can be not only global deformation but also local deformations.
- We established a novel mathematical model of nonperiodic folding, dynamical systems of origami tessellations, and found some nonlinear global deformations.

e.g., Nonperiodic folding can approximate doubly curved surfaces.

Proposed Model: Dynamical Systems of Tessellated Structures

Determinictic Origami Tessellation

- An Infinite sequence of **unit cells**, where the folded state of a unit cell determines that of its adjacent one because of the geometric constraints.
- We define the **discrete dynamical system F**: $\mathbf{x}_t \mapsto \mathbf{x}_{t+1}$, where \mathbf{x}_t represents the folded state of t-th unit cell. Then, $\{\mathbf{x}_0,\mathbf{x}_1...\}$ represents the entire folded state.

Global/Local DOF of Periodic Folded State and Linear Stability Analysis

- A Fixed Point x^* satisfying $F(x^*)=x^*$ corresponds to a periodic folded state.
- The Linear stablity tells us how the deformation in an initial unit cell propagates to subsequent cells if we deform an initial cell along with an eigenvector of $DF(x^*)$.

Result: Some Global Deformations in Nonperiodic Folding and Connection to Mathematical Structures

Global Deformations Induced by Global DOF Undulations of rotationally symmetric origami tessellations and quasiperiodic solutions/conservative systems [1][2].

- Dynamical system of N-fold symmetric waterbomb tube can have fixed point corresponding to a cylindrical foldede state with its gDOF=2. Around such a fixed point, quasiperiodic solutions exist which induces the undulating folded states, where we can change their "Amplitude" and "Phase" by tuning an initial value \mathbf{x}_0 [1].
- This undulation is not limited to waterbomb tube, but the universal phenomenon in a family of N-fold symmetric tubular origami tessellations, which we explained by proving that their dynamical system is conservative. The conservativeness vanishes if the crease pattern includes the scaling [2].

Global Deformations Induced by Local DOF "Soliton-like" behavior and **homoclinic/heteroclinic soliution** [3]. Phase Diagram ($\alpha=45^{\circ},\beta=45.1^{\circ},N=8$) Periodic State A Periodic State A* Phase Diagram of Kagome Lattice Periodic state A* with local DOF=2 Cylindrical state with local DOF=2 stable and 1 unstable direction) Propagation of Localized Deformation **Propagation of Localized Deformation** Homoclinic Orbit **Heteroclinic Orbit** ------0.8 0.2 6.0 ö Periodic state A with local DOF=2 0.0 0.4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 120 30 20 10

Future Work

- Realize undulations/soliton and so on in the physical prototypes.
- Consider origami tessellations with no symmetry assumptions, which induces the dynamical systems in a higher dimensional space.
- Connect mathematical properties to mechanical properties; <u>e.g.</u>, A periodic state with the large number of unit cells with its gDOF>0 ⇒ Flexible, and gDOF=0 ⇒ Rigid?
- Can we realize phenomena known in the dynamical systems theory such as Chaos?

This work was supported by JSPS KAKENHI Grant Number JP23KJ0682 and JST PREST Grant Number JPMJPR1927.

- [1] R. Imada & T. Tachi. "Geometry and Kinematics of Cylindrical Waterbomb Tessellation." ASME Journal of Mechanisms and Robotics, (2022).
- [2] R. Imada & T. Tachi. "Undulation in Axisymmetric Tubular Origami Tessellations: a Connection to Area-Preserving Map." Chaos, (2023), (accepted).
- [3] R. Imada & T. Tachi. "折紙/切紙テセレーションに現れるソリトンと力学系による解析."日本応用数理学会 2022 年度年会講演予稿集, (2022).

