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Research Topic: Nonperiodic Folding of Periodic Origami

Kinematics of Rigid Origami e.g., Periodic folding approximates only single curved surfaces such as plane and cylinder.

» Kinematics of rigid origami has played a central role in origami science/engineering,
where facets/creases of origami are replaced by rigid pabels/rotational hinges.

= The preservation of the shapes of panels and their connectivities impose multiple
nonlinear constraints, which are generally hard to solve directly.

Periodic Folding of Periodic Origami

* The periodicity makes solving the kinematics easier and leads to global deformations
of the entire structure, which is useful for engineering applications.
 However, it also limits the potential of periodic origami, i.e., origami tessellations.

Nonperiodic Folding of Periodic Origami

= Although it is a source of interesting phenomena that cannot be feasible through
periodic folding, it is hard to solve and mathematically understand the kinematics.

= Also, there can be not only global deformation but also local deformations.

» We established a novel mathematical model of nhonperiodic folding, dynamical
systems of origami tessellations, and found some nonlinear global deformations.

Proposed Model: Dynamical Systems of Tessellated Structures

Determinictic Origami Tessellation Global/Local DOF of Periodic Folded State and Linear Stability Analysis

* An Infinite sequence of unit cells, where the folded state of a unit cell determines | = A Fixed Point x* satisfying F(x*)=x" corresponds to a periodic folded state.

that of its adjacent one because of the geometric constraints. * The Linear stablity tells us how the deformation in an initial unit cell propagates
= We define the discrete dynamical system F: x; » X1, where X; represents the to subsequent cells if we deform an initial cell along with an eigenvector of DF(x™).
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Result: Some Global Deformations in Nonperiodic Folding and Connection to Mathematical Structures

Cllelo-IMDI (o] il A a (e [IT-Te o)A El[o] s IMDI0] M Undulations of rotationally symmetric origami tessellations and quasiperiodic solutions/conservative systems [1][2].

* Dynamical system of N-fold symmetric waterbomb tube can have fixed point corresponding to a cylindrical foldede state with its gDOF=2. Around such a fixed point,
guasiperiodic solutions exist which induces the undulating folded states, where we can change their “Amplitude” and “Phase” by tuning an initial value x,[1].
» This undulation is not limited to waterbomb tube, but the universal phenomenon in a family of N-fold symmetric tubular origami tessellations, which we explained by
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proving that their dynamical system is conservative. The conservativeness vanishes if the crease pattern includes the scaling [2]. ST e s
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“Soliton-like” behavior and homoclinic/heteroclinic soliution [3].
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Future Work

» Realize undulations/soliton and so on in the physical prototypes.

= Consider origami tessellations with no symmetry assumptions, which induces the dynamical systems in a higher dimensional space.

= Connect mathematical properties to mechanical properties; e.g., A periodic state with the large number of unit cells with its gDOF>0 = Flexible, and gDOF=0 = Rigid?
= Can we realize phenomena known in the dynamical systems theory such as Chaos?
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